NEW "Pd / ULTRA-THIN AMORPHOUS-OXIDE LAYER /ZSM-5" CATALYSTS FOR SELECTIVE FORMATION OF PROPANE FROM  ${\rm CO/H_2}$ 

Akira KASE, Kiyotaka ASAKURA, Chikashi EGAWA, and Yasuhiro IWASAWA\*

Department of Chemistry, Faculty of Science, The University of Tokyo,

Hongo, Bunkyo-ku, Tokyo 113

Among new three types of "Pd / ultra-thin amorphous-oxide( $\rm La_2O_3$ ,  $\rm SiO_2$ , or  $\rm TiO_2$ ) layers / ZSM-5" catalysts, prepared by a two-stage attaching technique, the  $\rm La_2O_3$ -coated ZSM-5 -supported Pd catalyst was found to be a selective catalyst for propane formation (68%) from CO and  $\rm H_2$  at 543 K and 1.01 MPa.

It is still acutely difficult to convert carbon monoxide to a particular hydrocarbon with a good selectivity; exceptional metal catalysts are Co-Cd/A-zeolite,  $^{1)}$  FeCl $_{3}$ /graphite-Na/naphthalene,  $^{2)}$  Cr $_{2}$ O $_{3}$ /ZnO-ZSM-5,  $^{3)}$  and Mo-monomer/SiO $_{2}$  $^{4)}$  for the formations of propene ( $\approx$ 100%), acetylene (93%), ethane (85%), and ethane (70%), respectively, the products being C $_{2}$  hydrocarbons except for propene. We report the selective catalysis of new "Pd/three-monolayer amorphous metal-oxide/ZSM-5" catalysts for propane formation from CO and H $_{2}$ .

Catalysts were prepared by a two-stage attaching technique. At first, hydroxyl groups of the external surface (14 m<sup>2</sup>g<sup>-1</sup>) of a 473 K- pretreated ZSM-5 (H-type,  $SiO_2/Al_2O_3=81.7)^{5}$ ) were interacted with lanthanum isopropoxide (La(i-OPr)<sub>3</sub>/OH=3) in a reflux hexane (Na-wire-dried) under atmospheric pressure of Ar (99.9995%), followed by decantation to remove a residual La(i-OPr)<sub>3</sub> and then by oxidation at 773 K. The lanthana layer attached to the external surface of ZSM-5 was exposed to water vapour overnight to form new OH groups on the lanthana layer. The sample was treated at 473 K under vacuum and the reaction with La(i-OPr)<sub>3</sub> was repeated again. Finally, three atomic layers of La<sub>2</sub>O<sub>3</sub> were attached onto ZSM-5 external surfaces. Subsequently palladium was supported on the La<sub>2</sub>O<sub>3</sub> layers by the reaction between hydroxyls of the La<sub>2</sub>O<sub>3</sub> surface and Pd( $\chi$ -C<sub>3</sub>H<sub>5</sub>)<sub>2</sub>; a C<sub>3</sub>H<sub>5</sub> ligand reacted with an OH group. The attached Pd species were reduced with H<sub>2</sub> at 673 K to lead to the formation of Pd metal particles supported on the ultra-thin layers of lanthana. These

steps for the preparation of  $Pd/La_2O_3/ZSM-5$  are illustrated in Scheme 1.  $Pd/SiO_2/ZSM-5$  and  $Pd/TiO_2/ZSM-5$  were prepared in almost the same way, but in these samples methyltriethoxysilane  $(CH_3Si(OEt)_3)$  or titanium isopropoxide  $(Ti(i-OPr)_4)$  vapour was contacted with the hydroxyls of ZSM-5 surfaces at 473 K under vacuum. The alkoxides of La, Si, and Ti with large molecular size were chosen not to enter the cavities of zeolite. The Pd-loadings (wt% in catalysts) were 0.94%  $(La_2O_3)$ , 0.95%  $(SiO_2)$ , and 0.42%  $(TiO_2)$ .



Scheme 1. Illustration of the preparation of "Pd/three-atomic  $La_2O_3$ -layers/ZSM-5" catalyst.

The intensity profiles of X-ray microanalysis (XMA) and the high resolution TEM images of the samples coated with three atomic oxide-layers which was indicated by gravimetric and X-ray fluorescence (XRF) analyses suggested the layer-like-coated surfaces with nearly constant thickness, island-like oxides on ZSM-5 substrate being never observed. The X-ray diffration (XRD) and electron diffraction (ED) showed neither peak nor pattern for crystalline  $La_2O_3$ ,  $SiO_2$ , or  $TiO_2$ , while for a mixture of these metal oxides and ZSM-5 with the same composition sharp XRD peaks of the metal oxide were observed. These results together with the fact that the lattice constants of  $La_2O_3$  and  $TiO_2$  are incoherent with that of ZSM-5 indicate that the aultra-thin oxide layers are amorphous. The pore diameters of ZSM-5 remained

Syn-gas conversion on zeolite-based, doubly-attached and physically-mixed catalysts<sup>a)</sup> Table 1.

| Catalysts <sup>b)</sup>                | Temp/K     | Conv./%c) | Selec                | %/.    |                 | Dis          | Distributions    | lons of          | 1            | Hydrocarbons | / % f)            |                      |
|----------------------------------------|------------|-----------|----------------------|--------|-----------------|--------------|------------------|------------------|--------------|--------------|-------------------|----------------------|
|                                        |            |           | н.с. <sup>д)</sup>   | 0xy.e) | <sup>2</sup> 00 | $c_1$        | c <sub>2</sub> - | c <sub>2</sub> = | C3_          | C3           | C <sub>4</sub>    | C <sub>5</sub> + g)  |
|                                        | 473        |           |                      |        |                 | •            |                  |                  | 1 = 0        |              |                   | 0.4                  |
| Pd/La <sub>2</sub> 0 <sub>3</sub> /2   | 573<br>623 | 2.0       | 95.2<br>96.0<br>94.0 | 0.6    | 3.4.0           | 15.1<br>34.2 | 9.3              | 0.5              | 48.4<br>33.0 | 2.0<br>1.4   | 9.0<br>9.1<br>8.3 | 14.7<br>15.6<br>13.7 |
| (Pd/La <sub>2</sub> 0 <sub>3</sub> )+2 | 543        | 0.3       | 100                  | 0.0    | 0.0             | 51.7         | 15.4             | 3.5              | 5.9          | 7.8          | 9.5               | 6.3                  |
| pd/SiO /7                              | 473<br>543 | 0.15      | 9.96                 | 0.1    | 0.0             | 89.0         | 4.9              | 2.5              | 1.1          | 1.1          | 1.4               | 0.0                  |
| 7/2010/11                              | 573<br>623 |           |                      |        |                 |              |                  |                  |              | 1.8          |                   |                      |
| (Pd/SiO <sub>2</sub> )+Z               | 543        | 0.04      | 100                  | 0.0    | 0.0             | 0.69         | 8.9              | 4.4              | 7.5          | 7.5          | 2.7               | 0.0                  |
| D4/T+0 /7                              | 473<br>543 | 0.4       | 100<br>99.2          | 0.0    | 0.0             | 87.2         | 9.6              | 3.2              | 0.0          | 0.0          | 0.0               | 0.0                  |
| 11,1102/2                              | 573<br>623 |           | 99.8                 |        | 0.0             | 2.           |                  |                  |              |              |                   | 5.4                  |
| (Pd/TiO <sub>2</sub> )+2               | 543        | 0.1       | 100                  | 0.0    | 0.0             | 75.0         | 10.2             | 1.9              | 5.6          | 4.6          | 2.7               | 0.0                  |

to 43 % level of the initial conversion after 13 h on stream at 543 K. b) Z: ZSM-5. c) Conversion(%) is defined as:  $100x \sum (\text{products})/(\text{CO})$ -input on C-base. d)  $\text{C}_1\text{-C}_7$  hydrocarbons. e)  $\text{CH}_3\text{OH} + \text{CH}_3\text{OCH}_3$ . f)  $\text{C}_n$ : alkanes,  $\text{C}_n$ : alkenes. The selectivity(71%) to  $\text{C}_3$  declined slowly to 65% after 13 h on stream. a) Catalyst=1 g, P=1.01 MPa,  $CO/H_2=1/2$ , SV=3600  $h^{-1}(1.01$  MPa, 300 K). The data were taken during the first hour of run. The conversion decreased gradually with time; for example, for  $\mathrm{Pd}/\mathrm{La}_2^{0}_3/\mathrm{Z}$  catalyst, g)  $C_5-C_7$  H.C. were produced. 858 Chemistry Letters, 1986

unchanged by the attachment of the three-atomic amorphous layers.

The particle sizes of Pd on these oxide/ZSM-5 were 60  $\mathring{A}$  on average (H/Pd and TEM), the size being suitable for methanol formation.<sup>6,7)</sup>

CO hydrogenation was studied in a pressurized flow-type reactor (0.10-1.01 MPa) equipped with two double-column-type gas-chromatographs (TCD & FID) for product analyses. In CO hydrogenation at atmospheric pressure (CO/H $_2$ =1/2) and T=473-723 K, the palladium supported on the ultra-thin amorphous-oxide layer-coated ZSM-5 showed little activity for methanol formation and methane was predominantly formed. Methanol formation on the Pd/La $_2$ O $_3$ /ZSM-5 catalyst at 473 K markedly increased with an increase of the pressure to 1.01 MPa. The catalyst was much more active than a physical mixture of a usual La $_2$ O $_3$ -supported Pd catalyst and ZSM-5 for methanol synthesis.

The yields of  ${\rm C_2}^+$ -hydrocarbons increased drastically at temperatures above 543 K as shown in Table 1. It is to be noted that 71% of total hydrocarbons formed in CO hydrogenation on Pd/La $_2$ O $_3$ /ZSM-5 at 543 K were C $_3$  components, more than 96% of which being propane. In addition, C $_2$ - and C $_4$ -yields were as few as 2.3% and 9.0%, respectively. The Pd/SiO $_2$ /ZSM-5 catalyst was less active as compared with the Pd/La $_2$ O $_3$ /ZSM-5 catalyst, but the C $_2$  population was relatively high, resulting in 80% selectivity to C $_2$  and C $_3$  hydrocarbons at 543 K. On the Pd/TiO $_2$ /ZSM-5 catalyst a specific feature in product distributions was not observed.

The reason that the "Pd / ultra-thin amorphous-oxide layer / ZSM-5" catalysts showed specific product ditributions, particularly propane being selectively formed on Pd/La $_2$ O $_3$ /ZSM-5, is not so clear at the present, but usual mixed catalysts, (Pd/La $_2$ O $_3$ )+(ZSM-5), (Pd/SiO $_2$ )+(ZSM-5) and (Pd/TiO $_2$ )+(ZSM-5), were much less active and not selective as shown in Table 1. The samples of Pd supported on "ultra-thin layers of amorphous oxides attached to ZSM-5 external surfaces provide a new class of catalysts.

## References

- 1) D.Fraenkel and B.C.Gates, J.Am.Chem. Soc., 102, 2478(1980).
- 2) W.Jones, R.Schlogl, and J.M.Thomas, J.Chem.Soc., Chem.Commun., 1984, 464.
- 3) C.D.Chang. J.N.Miale, and R.F.Socha, J.Catal., 90, 84(1984).
- 4) Y.Iwasawa and N.Ito, J.Catal., 96, 613(1985)
- 5) C.J.Plank, E.J.Rosinski, and A.B.Schwartz, U.S. patent, 1974, 1402981.
- 6) Y.A.Ryndin, R.F.Hicks, and A.T.Bell, J.Catal., 70, 287(1981).
- 7) S.Ichikawa, H.Poppa, and M.J.Boudart, J.Catal., 91, 1(1985).

(Received February 18, 1986)